ここでは、アイソヘドラルタイリングIH21(P6)について、解説します。

IH21(P6)

アイソヘドラルタイリングIH21(P6)の基本図形は以下のような形になります。

IH21(P6)の基本図形

これは、記事「基本図形の形を考える」で示したP6群の基本図形の各辺の長さを調整したものになっています。

IH21(P6)の基本図形のサイズ

この基本図形の各辺に以下の図のように、ラベルを振ります。

IH21(P6)の基本図形のサイズ

今回、辺\(b\)と辺\(c\)、辺\(d\)と辺\(e\)は、それぞれ同じ長さを持つように設定します。また、辺\(a\)の中点と、辺\(b\)と辺\(c\)の交点はそれぞれ近接する2つの三角格子点(黒点)と一致するようにとり、辺\(d\)と辺\(e\)の交点は近接する3つの三角格子の重心(赤点)と一致するようにとります。さらに、辺\(b\)と辺\(c\)の間の角を60°、辺\(d\)と辺\(e\)の間の角を120°にとります。あとは、\(r_1, r_2\)の長さを適当に調整することで、この基本図形の形を決めることができます。

IH21(P6)の基本図形を並べる

このIH21(P6)の基本図形をP6群の対称性を保ちながら並べると、以下のような図形が得られます。

IH21(P6)による図形

IH21(P6)の基本図形の変形

基本図形の変形を行うために、基本図形の各辺にラベルをふって、隣り合う基本図形との辺の対応関係を見てみます。

IH21(P6)の基本図形に対する辺のラベルと向き

辺\(a\)は両側のラベルが同じで異なる向きに重なっていますので、辺\(a\)はその中点に対して点対称になるように変形します。辺\(b\)と辺\(c\)、辺\(d\)と辺\(e\)がそれぞれ異なる向きに重なっています。つまり、辺\(b\)を変形し、辺\(c\)は、変形した辺\(b\)を上下左右反転した形状に変形します。辺\(d\)と辺\(e\)についても同様な変形を行うことができます。それにより、隣り合う基本図形同士を重ねることなくP6群の対称性に従って敷き詰めることができます。

ここでは、書籍「装飾パターンの法則」のp.97にあるIH21(P6)の例を参考に、このルールに従ってIH21(P6)の基本図形を下図のように変形してみました。

IH21(P6)の基本図形の変形

この変形した基本図形をP6群の対称性を考慮して並べていくと、下図のような図形を得ることができます。なお、今回は三角格子点も示しています。

IH21(P6)の変形した基本図形による図形

プログラムコード

今回の図形を作成するためのプログラムコードを示します。

PVector[][] lattice; // 格子点ベクトル
PShape tile; // タイル
PVector[] base = new PVector[2]; // 格子を張るベクトル
int col_num = 4; // 描画するタイルの列の数
float scalar; // タイルの辺の長さ

void setup(){

  size(1000, 1000, P2D);
  noFill();
  scalar = width * 1.0 / col_num; // 描画ウィンドウと行の数からタイルの大きさを決定
  makeTriangleVector(); // 三角格子を張るベクトルの生成
  makeLattice(); // 格子点ベクトルを生成
  makeTileP6(); // タイルを生成
  drawTiling(); // タイリングを描画

  save("IH21_P6_transformation.jpg");
}

// 三角格子を張るベクトルを生成する関数
void makeTriangleVector(){
  base[0] = new PVector(1.0, 0.0);
  base[1] = PVector.fromAngle(PI / 3);
}

// 三角格子を生成する関数
void makeLattice(){
  int row_num = ceil(col_num / base[1].x); // 行の数
  lattice = new PVector[col_num + 3][row_num + 1];
  for (int i = 0; i < col_num + 3; i++){
    for (int j = 0; j < row_num + 1; j++){
      PVector v = PVector.mult(base[0], i * scalar); 
      v.add(PVector.mult(base[1], j * scalar));
      lattice[i][j] = new PVector(v.x % ((col_num+3)*scalar) - 2 * scalar, v.y); // x軸方向にscalarの2倍だけ左にシフト
    }
  }
}

// 五角形を変形する関数(基本図形)
PShape transformPentagon(){
  
  PVector[] v = new PVector[5]; // 五角形の頂点
  float r1, r2;
  r1 = 1.0/6.0 * scalar;
  r2 = 1.0/12.0 * scalar;

  v[0] = new PVector(-r2, -r1);
  v[0].sub(base[0].copy().mult(scalar));
  v[1] = new PVector(r2, r1);
  v[1].sub(base[0].copy().mult(scalar));
  v[2] = new PVector(0.0, 0.0);
  v[3] = v[1].copy().rotate(radians(60));
  v[4] = new PVector(0.0, -2.0 / 3.0 * base[1].y * scalar);
  v[4].sub(base[0].copy().mult(scalar));

  // 五角形を変形する
  PShape pentagon = createShape();
  pentagon.beginShape(); 
  PVector[] auxiliary_point = new PVector[11];
  // 辺aは中点に対して点対称に変形する
  pentagon.vertex(v[0].x, v[0].y);
  auxiliary_point[0] = getAuxiliaryPoint(v[0], v[1], 1.0/8.0, 3.0/16.0);
  auxiliary_point[1] = getAuxiliaryPoint(v[0], v[1], 1.0/4.0, 1.0/4.0);  
  auxiliary_point[2] = getAuxiliaryPoint(v[0], v[1], 3.0/4.0, -1.0/4.0);
  auxiliary_point[3] = getAuxiliaryPoint(v[0], v[1], 7.0/8.0, -3.0/16.0);
  pentagon.quadraticVertex(auxiliary_point[0].x, auxiliary_point[0].y, auxiliary_point[1].x, auxiliary_point[1].y);
  pentagon.vertex(auxiliary_point[2].x, auxiliary_point[2].y);
  pentagon.quadraticVertex(auxiliary_point[3].x, auxiliary_point[3].y, v[1].x, v[1].y);
  // 辺bを変形する
  auxiliary_point[0] = getAuxiliaryPoint(v[1], v[2], 2.0/5.0, 3.0/32.0);
  auxiliary_point[1] = getAuxiliaryPoint(v[1], v[2], 1.0/2.0, 1.0/8.0);  
  auxiliary_point[2] = getAuxiliaryPoint(v[1], v[2], 9.0/10.0, -1.0/8.0);
  auxiliary_point[3] = getAuxiliaryPoint(v[1], v[2], 15.0/16.0, -1.0/32.0);
  auxiliary_point[4] = getAuxiliaryPoint(v[1], v[2], 31.0/32.0, -1.0/32.0);
  pentagon.vertex(auxiliary_point[0].x, auxiliary_point[0].y); 
  pentagon.bezierVertex(auxiliary_point[1].x, auxiliary_point[1].y, auxiliary_point[2].x, auxiliary_point[2].y, auxiliary_point[3].x, auxiliary_point[3].y); 
  pentagon.quadraticVertex(auxiliary_point[4].x, auxiliary_point[4].y, v[2].x, v[2].y);
  // 辺cは辺bと同じ形を上下左右反転した形に変形する
  auxiliary_point[0] = getAuxiliaryPoint(v[2], v[3], 1.0/32.0, 1.0/32.0);
  auxiliary_point[1] = getAuxiliaryPoint(v[2], v[3], 1.0/16.0, 1.0/32.0);  
  auxiliary_point[2] = getAuxiliaryPoint(v[2], v[3], 1.0/10.0, 1.0/8.0);
  auxiliary_point[3] = getAuxiliaryPoint(v[2], v[3], 1.0/2.0, -1.0/8.0);
  auxiliary_point[4] = getAuxiliaryPoint(v[2], v[3], 3.0/5.0, -3.0/32.0);
  pentagon.quadraticVertex(auxiliary_point[0].x, auxiliary_point[0].y, auxiliary_point[1].x, auxiliary_point[1].y);
  pentagon.bezierVertex(auxiliary_point[2].x, auxiliary_point[2].y, auxiliary_point[3].x, auxiliary_point[3].y, auxiliary_point[4].x, auxiliary_point[4].y); 
  pentagon.vertex(v[3].x, v[3].y);  
  // 辺dを変形する
  auxiliary_point[0] = getAuxiliaryPoint(v[3], v[4], 1.0/3.0, 1.0/2.0);
  auxiliary_point[1] = getAuxiliaryPoint(v[3], v[4], 1.0/2.0, 1.0/3.0);
  pentagon.quadraticVertex(auxiliary_point[0].x, auxiliary_point[0].y, auxiliary_point[1].x, auxiliary_point[1].y);
  pentagon.vertex(v[4].x, v[4].y);  
  // 辺cは辺bと同じ形を上下左右反転した形に変形する
  auxiliary_point[0] = getAuxiliaryPoint(v[4], v[0], 1.0/2.0, -1.0/3.0);
  auxiliary_point[1] = getAuxiliaryPoint(v[4], v[0], 2.0/3.0, -1.0/2.0);
  pentagon.vertex(auxiliary_point[0].x, auxiliary_point[0].y);  
  pentagon.quadraticVertex(auxiliary_point[1].x, auxiliary_point[1].y, v[0].x, v[0].y);  
  
  pentagon.endShape();
  
  return pentagon;
}

// 辺を変形するために必要な補助点を算出する関数
PVector getAuxiliaryPoint(
  PVector start,
  PVector end, 
  float parallel_size,
  float vertical_size
){
  PVector dir_parallel = end.copy().sub(start.copy());
  PVector dir_vertical = new PVector(-dir_parallel.y, dir_parallel.x);
  PVector auxiliary_point = start.copy().add(dir_parallel.copy().mult(parallel_size)).add(dir_vertical.copy().mult(vertical_size));
  return auxiliary_point;
}

// 格子形状に合わせたタイリングを描画する関数
void drawTiling(){
//  background(255);
  for (int i=0; i<lattice.length; i++){
    for (int j=0; j<lattice[0].length; j++){
      if( i%2 == 0 && j%2 == 0 ){
        tile.resetMatrix();
        tile.translate(lattice[i][j].x, lattice[i][j].y); // タイルの位置を指定
        shape(tile); // タイルを描画
      }
    }
  }

  // 格子点を描画する
  for (int i=0; i<lattice.length; i++){
    for (int j=0; j<lattice[0].length; j++){
      circle(lattice[i][j].x, lattice[i][j].y, 10);
    }
  }
}

コメントを残す